首页> 外文OA文献 >Effects of elevated root zone CO2 and air temperature on photosynthetic gas exchange, nitrate uptake, and total reduced nitrogen content in aeroponically grown lettuce plants
【2h】

Effects of elevated root zone CO2 and air temperature on photosynthetic gas exchange, nitrate uptake, and total reduced nitrogen content in aeroponically grown lettuce plants

机译:根区CO2升高和空气温度对气生莴苣植物光合气体交换,硝酸盐吸收和总氮含量降低的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Effects of elevated root zone (RZ) CO2 and air temperature on photosynthesis, productivity, nitrate (NO3–), and total reduced nitrogen (N) content in aeroponically grown lettuce plants were studied. Three weeks after transplanting, four different RZ [CO2] concentrations [ambient (360 ppm) and elevated concentrations of 2000, 10 000, and 50 000 ppm] were imposed on plants grown at two air temperature regimes of 28 °C/22 °C (day/night) and 36 °C/30 °C. Photosynthetic CO2 assimilation (A) and stomatal conductance (gs) increased with increasing photosynthetically active radiation (PAR). When grown at 28 °C/22 °C, all plants accumulated more biomass than at 36 °C/30 °C. When measured under a PAR ≥600 μmol m−2 s−1, elevated RZ [CO2] resulted in significantly higher A, lower gs, and higher midday leaf relative water content in all plants. Under elevated RZ [CO2], the increase of biomass was greater in roots than in shoots, causing a lower shoot/root ratio. The percentage increase in growth under elevated RZ [CO2] was greater at 36 °C/30 °C although the total biomass was higher at 28 °C/22 °C. NO3– and total reduced N concentrations of shoot and root were significantly higher in all plants under elevated RZ [CO2] than under ambient RZ [CO2] of 360 ppm at both temperature regimes. At each RZ [CO2], NO3– and total reduced N concentration of shoots were greater at 28 °C/22 °C than at 36 °C/30 °C. At all RZ [CO2], roots of plants at 36 °C/30 °C had significantly higher NO3– and total reduced N concentrations than at 28 °C/22 °C. Since increased RZ [CO2] caused partial stomatal closure, maximal A and maximal gs were negatively correlated, with a unique relationship for each air temperature. However, across all RZ [CO2] and temperature treatments, there was a close correlation between maximal A and total shoot reduced N concentration of plants under different RZ [CO2], indicating that increased A under elevated RZ [CO2] could partially be due to the higher shoot total reduced N.
机译:研究了无根栽培生菜植物根区(RZ)CO2和空气温度对光合作用,生产力,硝酸盐(NO3-)和总还原氮(N)含量的影响。移植后三周,对两种在28 C / 22 / C的空气温度下生长的植物施加了四种不同的RZ [CO2]浓度[环境(360(ppm)和2000、10 000和50 000 ppm的升高浓度] (白天/晚上)和36°C / 30°C。随着光合有效辐射(PAR)的增加,光合CO2同化(A)和气孔导度(gs)增加。在28°C / 22°C下生长时,与36°C / 30°C下相比,所有植物积累的生物量更多。当在PAR≥600μmolm−2 s-1下测量时,RZ [CO2]升高导致所有植物中的A值明显升高,gs降低且中午叶片相对含水量更高。在较高的RZ [CO2]下,根部生物量的增加大于芽中的生物量,从而导致较低的芽/根比。尽管总生物量在28 C / 22 C时较高,但在较高的RZ [CO2]下,生长的增长百分比在36 C / 30 C时更大。在升高的RZ [CO2]下,两种温度下所有植物的NO3–和总降低的芽和根的N浓度均显着高于在360 ppm的环境RZ [CO2]下。在每个RZ [CO2]下,在28 C / 22 C下,NO3–和总减少的N芽浓度均高于36 C / 30C。在所有RZ [CO2]下,与28°C / 22°C相比,在36°C / 30°C下植物的根部具有更高的NO3–和降低的总氮浓度。由于增加的RZ [CO2]会导致部分气孔关闭,因此最大A和最大gs呈负相关,且每个空气温度之间存在唯一关系。然而,在所有的RZ [CO2]和温度处理中,在不同的RZ [CO2]下植物的最大A与总苗减少的N浓度之间存在密切的相关性,这表明在升高的RZ [CO2]下A的增加可能部分是由于较高的芽总数减少了N。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号